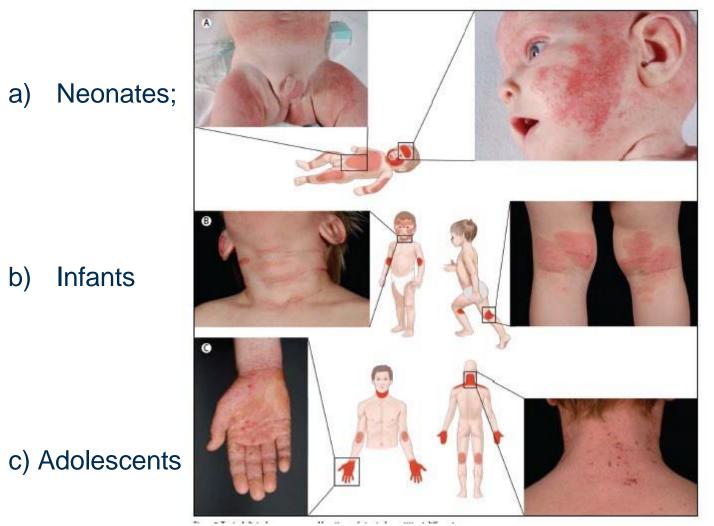
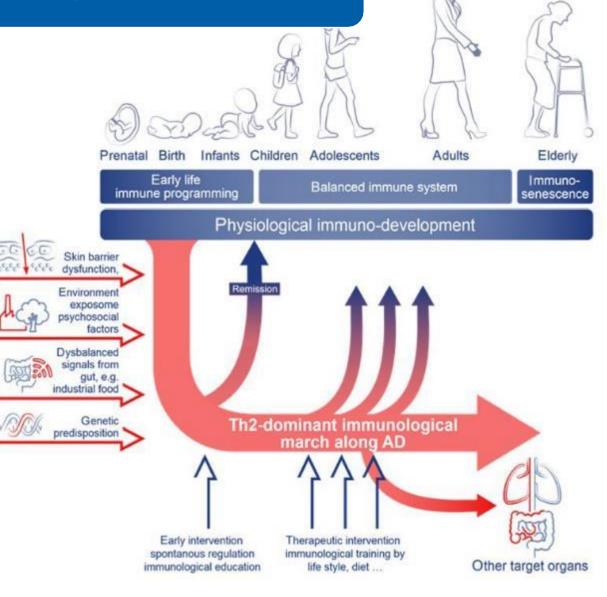


USZ Universitäts Spital Zürich

Atopic dermatitis in a Global Perspective Focus SubSaharan Africa


Peter Schmid-Grendelmeier Marie-Charlotte Brüggen Allergy Unit, Dept of Dermatology University Hospital of Zürich Zuerich, SWITZERLAND

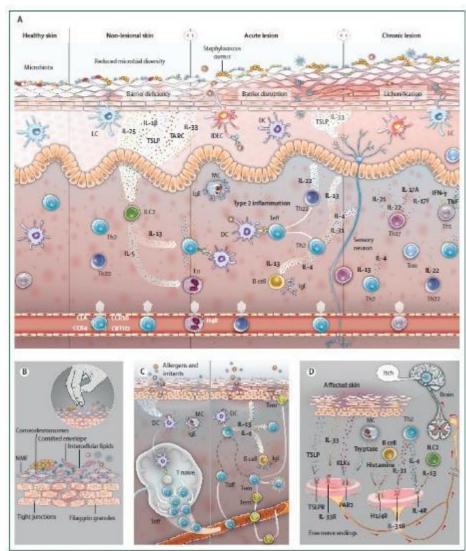
Atopic Dermatitis: Stratification based on age-related clinical picture



USZ Universitäts Spital Zürich

Adapted from Weidinger & Novak Lancet 2015

The immuno-development of Atopic Dermatitis


Traidl-Hoffmann C......Schmid-Grendelmeier P. Navigating the evolving landscape of atopic dermatitis: Challenges and future opportunities: The 4th Davos declaration. Allergy. 2024 Aug 4

Dokumentname / Autor / Abteilung

Pathophysiology and mechanism of AD

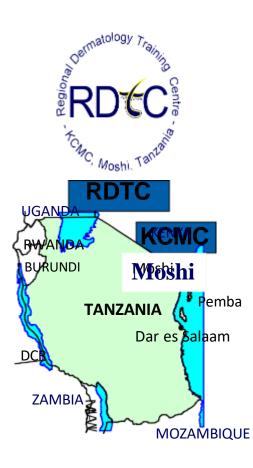
kure 2: Pathogenesis, main mechanisms, and pathophysiology of atopic dermatitis Universitäts Spital Zürich

Immune **D**eviation

IBD-DDD

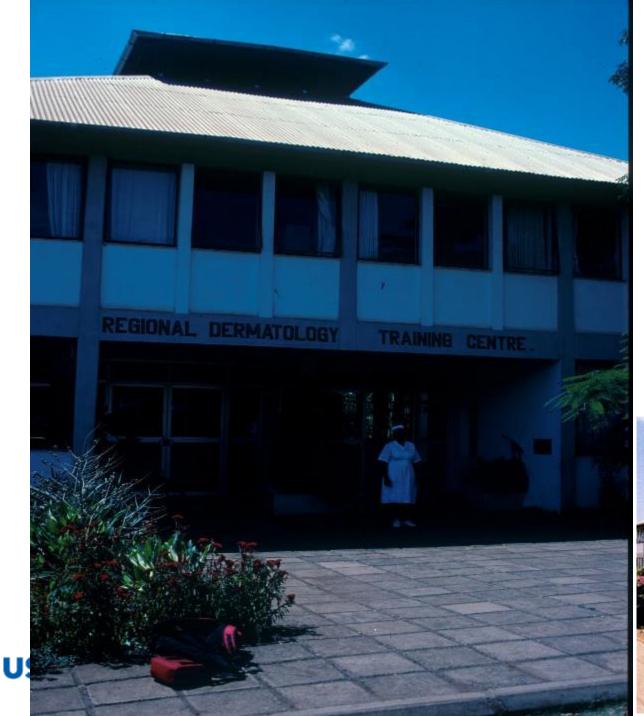
Barrier Ddisruption Microbe Dysbiosis

Many new insights:

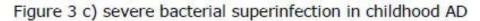

- Role of mediators and cell function
- Disrupted barrier function
- Role of environment
 - Allergens (Food?)
 - Microbiome
 - Mycobiome

Adapted from:

Sinéad M Langan, Alan D Irvine, Stephan Weidinger. Atopic dermatitis. Lancet 2020; 396: 345–60



USZ Universitäts Spital Zürich



2 years as consultant at the RDTC Continously acting as external examinator and

Atopic Dermatitis

Schmid-Grendelmeier et al, JEADV 2019; 33:2019-28

- Prvalence: 87-10 %
- Clinical feature: often quite papular, palmar hyperlinearity, flexural involvement

Atopic Dermatitis

Schmid-Grendelmeier et al, JEADV 2019; 33:2019-28

- Prvalence: 87-10 %
- Clinical feature: often quite papular, palmar hyperlinearity, flexural involvement
- Highly disturbing: Pityriasis alba (DD Pv, PMH, Leprosy)

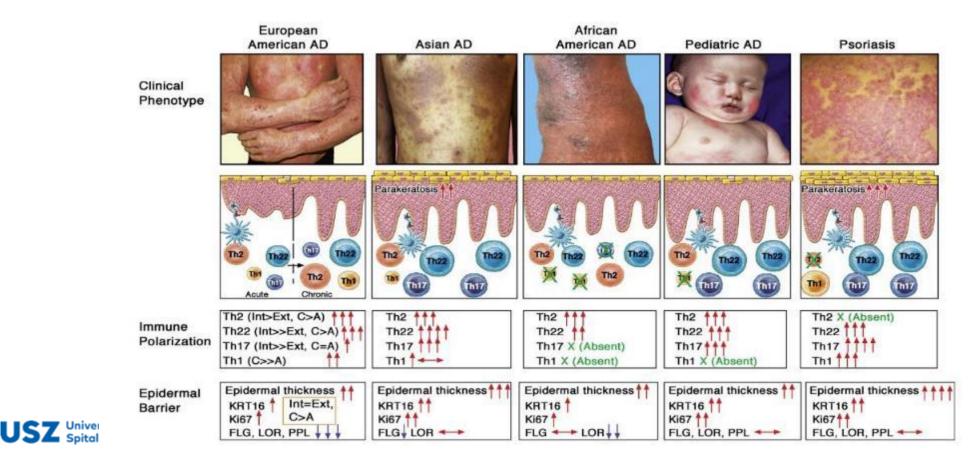
Atopic dermatitis in Zurich, Switzerland

Atopic dermatitis in Kilombero region, Tanzania

POSITION STATEMENT

Position Statement on Atopic Dermatitis in Sub-Saharan Africa: current status and roadmap

P. Schmid-Grendelmeier,¹ R. Takaoka,² K.C. Ahogo,³ W.A. Belachew,⁴ S.J. Brown,⁵ J.C. Correia,⁶ M. Correia,⁷ B. Degboe,⁸ V. Dorizy-Vuong,^{9,10} O. Faye,¹¹ L.C. Fuller,¹² K. Grando,¹ C. Hsu,¹³ K. Kayitenkore,¹⁴ N. Lunjani,¹⁵ F. Ly,¹⁶ G. Mahamadou,^{17,9} R.C.F. Manuel,¹⁸ M. Kebe Dia,¹⁹ E.J. Masenga,²⁰ C. Muteba Baseke,²¹ A.N. Ouedraogo,²² F. Rapelanoro Rabenja,²³ J. Su,²⁴ J.N. Teclessou,²⁵ G. Todd,²⁶ A. Taïeb^{9,10}*


J Europ Acad Derm Venerol 2019

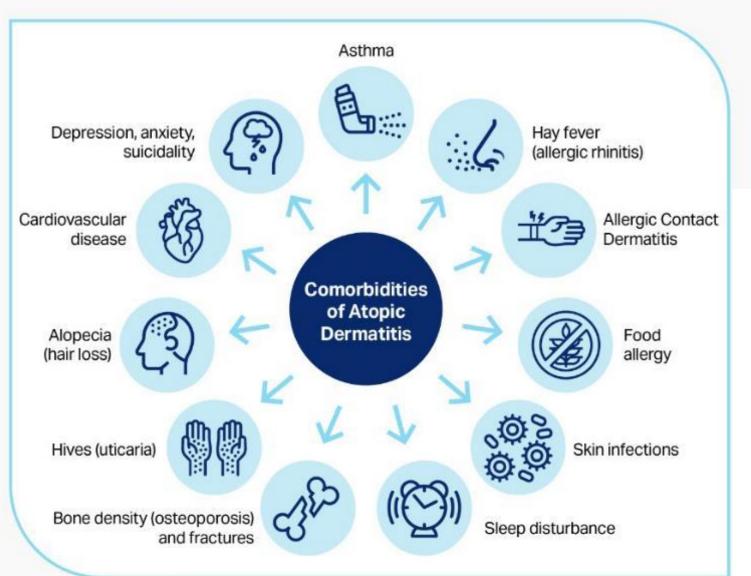
USZ Universitä Spital Züri

Atopic dermatitis endotypes and implications for targeted therapeutics

Check for updates

Tali Czarnowicki, MD, MSc,^{a,b} Helen He, BSc,^a James G. Krueger, MD, PhD,^b and Emma Guttman-Yassky, MD, PhD^{a,b} New York, NY

Эr


15

Verfasser | Dokumenten-Name | 00.00.2019

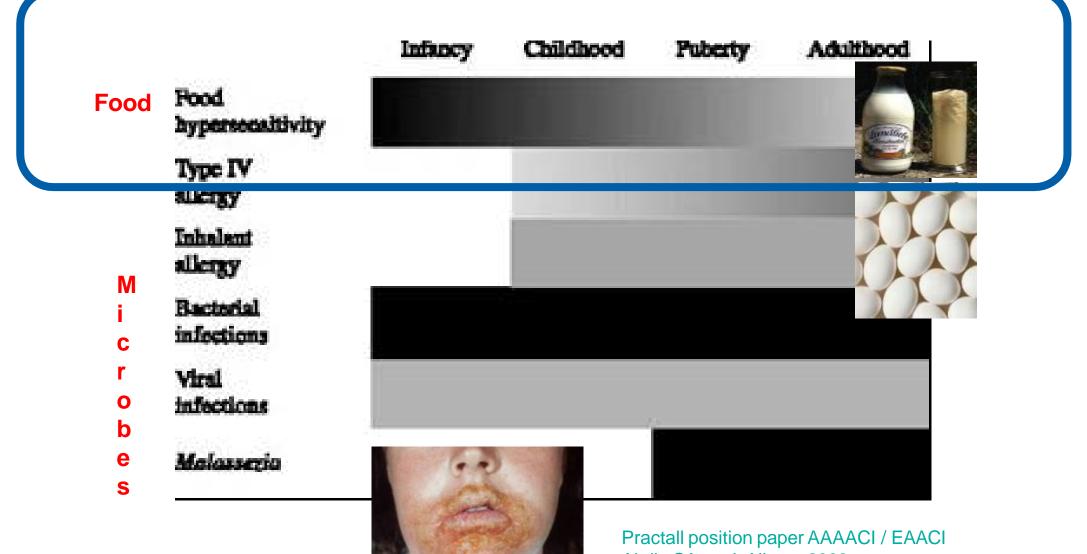
Comorbidities in AD

USZ

Atopic dermatitis patient/healthy control characteristics

	AD TZ	AD CH	HC TZ	нс сн
Sex	F: 3 M: 7	F: 3 M: 7	F: 5 M: 5	F: 5 M: 5
Age (mean years \pm SD)	43 +/- 12	42 +/- 14	33 +/- 14	31 +/- 8
Disease severity	Moderate: 4 Severe: 6	Moderate: 3 Severe: 7	-	-
Allergic rhinoconjuctivitis	8/10	7/10	0/10	2/10
Allergic asthma	-	4/10		
Food allergies	-	-	-	-

10101010Actopic dermatitis (AD)Healthy controls (HC)


Trigger factors in AD according to age

Practall position paper AAAACI / EAACI Akdis CA et al Allergy 2006 Akdis CA et al J Allergy Clini Immunol 2006

Trigger factors in AD according to age

USZ Universitäts Spital Zürich Akdis CA et al Allergy 2006 Akdis CA et al J Allergy Clini Immunol 2006

Bird's nest

dGrendelmeier ReiseAllergien FomF 202266

Platforms for MicroArray IgE (110-250 spec IgE values from 20-30 μ I Serum)

ALEX Allergy Explore

ALEX Alarger BA					
Company Datas	-	Common parts	bile things	Grant	Budard o talpath
			Palet		
			Anna prime		
	492	Antoine	Department metanom	1	
£	40	Bernela Scots	Cylender Michael		
t	17	Contract Revol	Program and with		
1	1072	Ort	Jan may		
£	10	Anner-Gran	Gepture habitationer		
í	8/00	Percent Approx	Lature percenter	print at	Drie Stamon
f	292	BM	Beater an annual		
e:;	10	Tinely	Pried and a state of the		
	1005	Terante	Pris.m.presses	idnig1	Bea Digentiti
£	1000	Tiophy	Phile At prototop	SPACE	Expense
()	1996	Tanenia	Preside protection	100415000	dates long/576
t	1000	Territor	Photo: produce	38116	fabir logo 546
t	100	Finance .	Priate protocolo	UP4sT	Petrality
	gate	THINK .	Philaphi graterise	100123	Protor
			Tecotor		
6	198	Access.	Acade and		
£	0	Asser	Acus globrana		1.000
£	100	Asian .	Analghitria	(Mag)	198.42
E	101	Abier	Arwagements	30024	Product
6	1008	Arithmin Tapermu	Cupreeous enterway	(milamin)	Photoin Lyrer
6	448	Auto	Planting smelles		CONTRACTOR -
L	100	An	Provenue (worksee	P1411	Out + Parity
r	4	See.	Pages sylvator	1.1.1	
ŧ	118	Determined 1	Projective related		

12 05 2123

ALEX war der erste ELISA basierte in vitro Multiplex-Allergietest, der die gleichzeitige Messung von Gesamt-IgE (tlgE) und spezifischem IgE (slgE) gegen eine Vielzahl von Allergenextrakten und molekularen Allergenen ermöglichte.

In dieser Tradition steht das NachFolgeprodukt ALEX².

Valus of mehr than >280 spec IgE

- Allergens (zb Birch)
- Molecular Allergens (e.g Bet v 1, Bet v 2)

Total IgE

ALEX Allergy Explorer

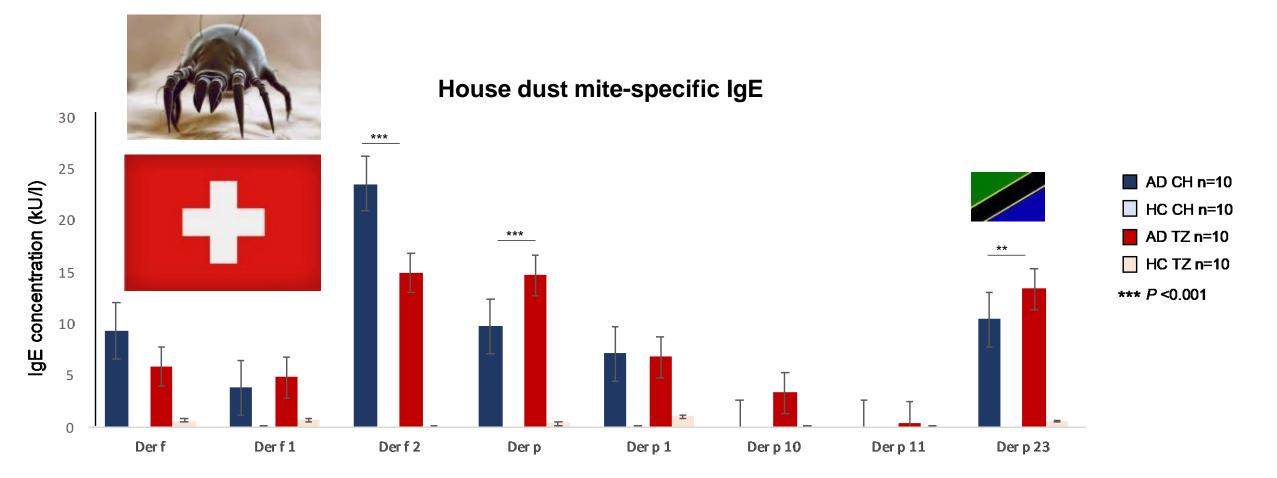
			ALEX* Allergen list		
Component/Extract	Allergencode	Common name	Scientific name	Component	Biochemical designation
			Pollen		
2			Grass pollen		
E	g17	Bahia Grass	Paspalum notatum	8	
E	g2	Bermuda Grass	Cynodon dactylon		
E	g7	Common Reed	Phragmites communis		
E	g202	Com	Zea mays	2	
E	g10	Johnson Grass	Sorghum halepense		
С	g100	Perennial Ryegrass	Lotium perenne	nLolp1	Beta-Expansin
E	g12	Rye	Secale cereale		
E	g6	Timothy	Phleum pratense	1.A	
С	g205	Timothy	Phleum pratense	rPhlp1	Beta-Expansin
С	g206	Timothy	Phleum pratense	rPhl p 2	Expansin
С	g215	Timothy	Phleum pratense	rPhl p 5.0101	Grass Goup 5/6
с	g209	Timothy	Phleum pratense	rPhLp 6	Grass Goup 5/6
С	g210	Timothy	Phleum pratense	rPhl p 7	Polcalcin
С	g212	Timothy	Phleum pratense	rPhLp 12	Profilin
		5.	Tree pollen		
E	t19	Acacia	Acacla spp.		
E	12	Alder	Alnus glutinosa		
с	100	Alder	Alnus glutinosa	rAln g 1	PR-10
С	1101	Alder	Alnus glutinosa	rAing 4	Polcalcin
С	t226	Arizona Cypress	Cupressus arizonica	nCup a 1	Pectate Lyase
E	t25	Ash	Fraxinus excelsior	12	
с	1103	Ash	Fraxinus excelsior	rFra e 1	Ole e 1-Family
E	t5	Beech	Fagus sylvatica		
E	114	Cottonwood	Populus nigra	8	

ALEX (in vitro multiplex allergy test, containing **283 allergens from 60** μ I) Natural and molecular allergens

Plants

- Grass pollen
- Tree pollen
- Weed pollen

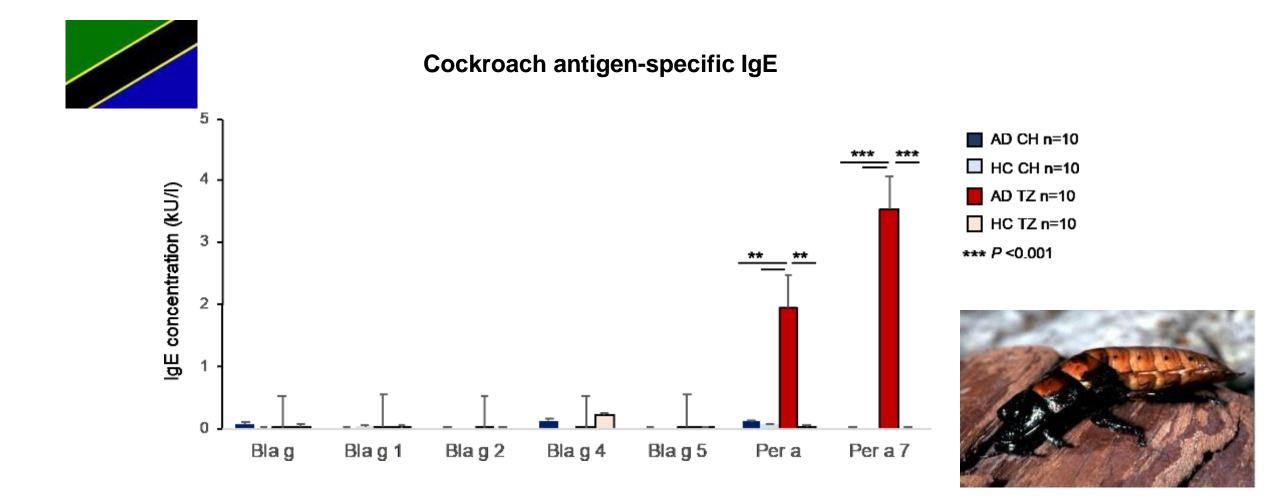
Animals, microbes

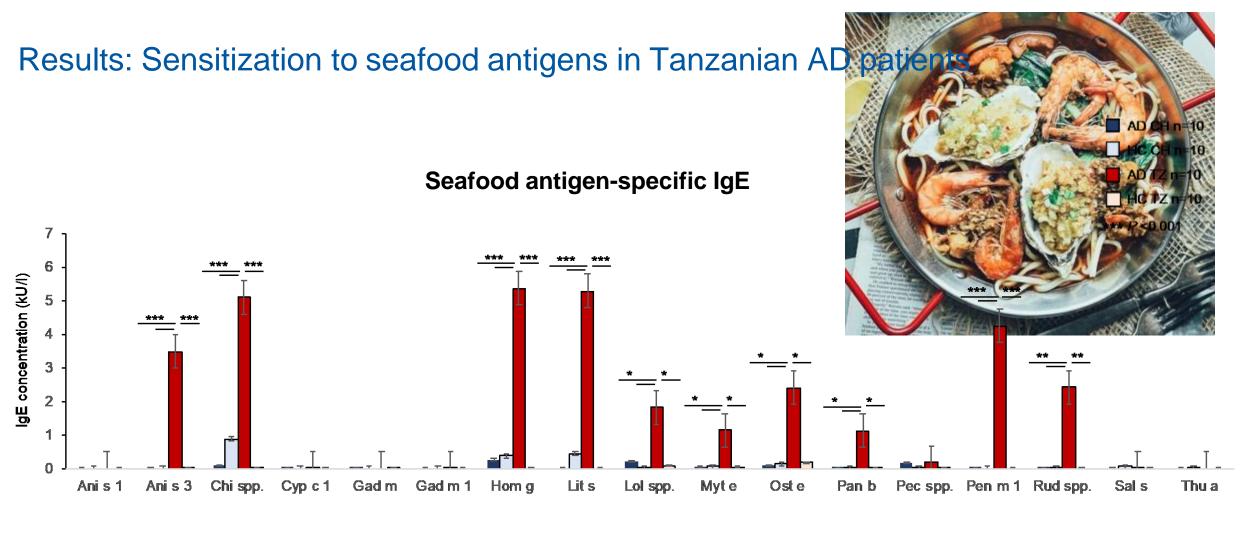

- Dander & epithelia
- Mites & cockroaches
- Moulds & yeasts

Food

- Cereals & seeds
- Egg & milk
- Fruits
- Legumes & nuts
- Meat
- Seafood
- Spcies
- Vegetables

Results: Distinct sensitization to house dust mite antigens in Swiss vs. Tanzanzian AD



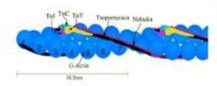

Lang CCV et al JEADV 2021

Results: Sensitization to cockroach antigens in Tanzanian AD patients only

Lang CCV et al JEADV 2021

Tropomyosin

USZ Universitäts Spital Zürich Lang CCV et al JEADV 2021



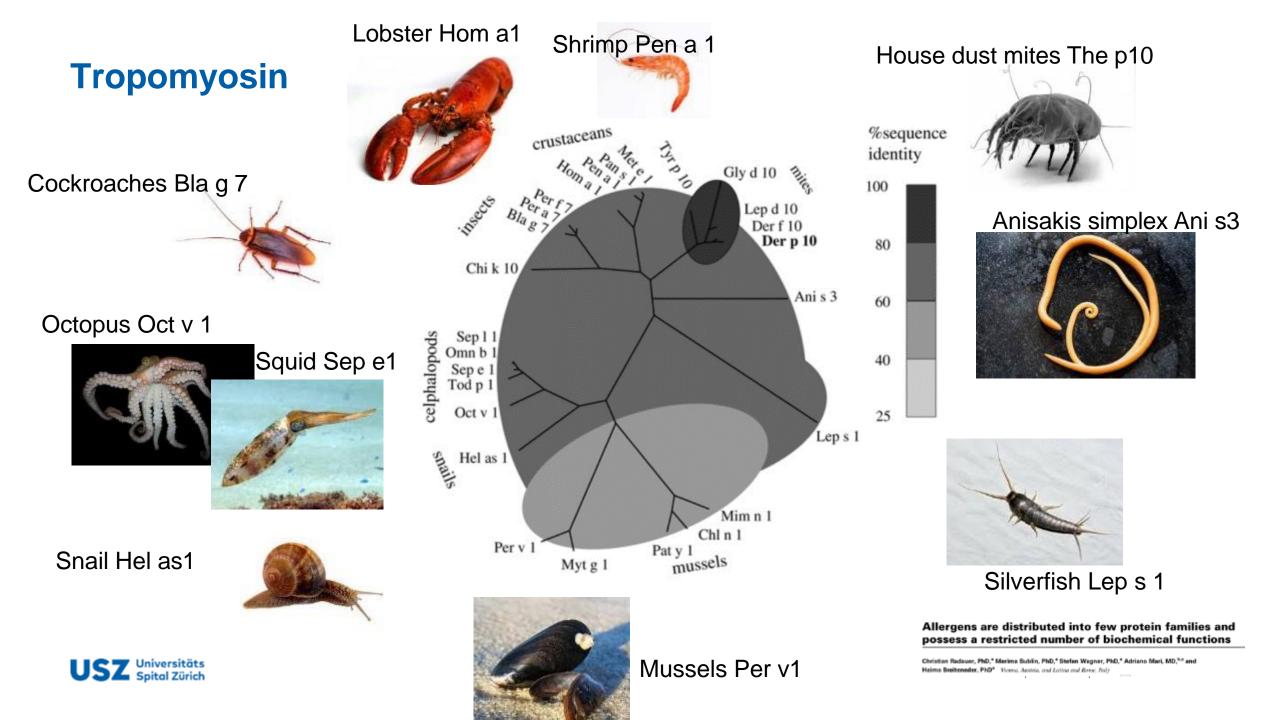
Tropomyosin Cross-reactivity

Table 1. Crossreactivity of tropomyosins from different invertebrate species

IgE-inducing	Crossreactive tropomyosin	Refs
tropomyosin	crossreactive a opomyosin	ners
		1001
A. simplex	House dust mite	[60]
(nematode)		
O. volvulus	Shrimp	[22]
(nematode)		
P. aztecus (shrimp)	Lobster, cockroach,	Reviewed
	grasshopper, fruit fly,	in [42], [61]
	house dust mites,	
	silverfish	
Homarus americanus	Other lobster, shrimp	Reviewed
(lobster)	-	in [42]
Charybdis feriatus	Lobster, shrimp	Reviewed
(crab)		in [42]
Periplaneta	Shrimp	Reviewed
americana		in [42]
(Sckroach)		
Blattella germanica	Other cockroach, mites	[62]
(cockroach)		
Mollusk	Shrimp, snail	Reviewed
	-	in [42]

Tropomyosin/Troponin

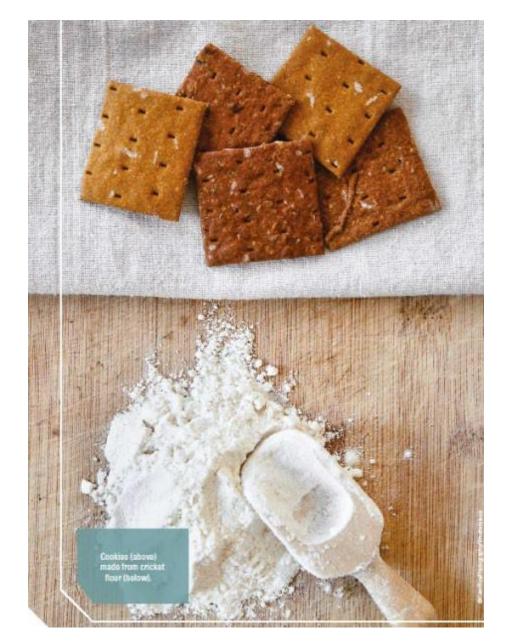
Mites

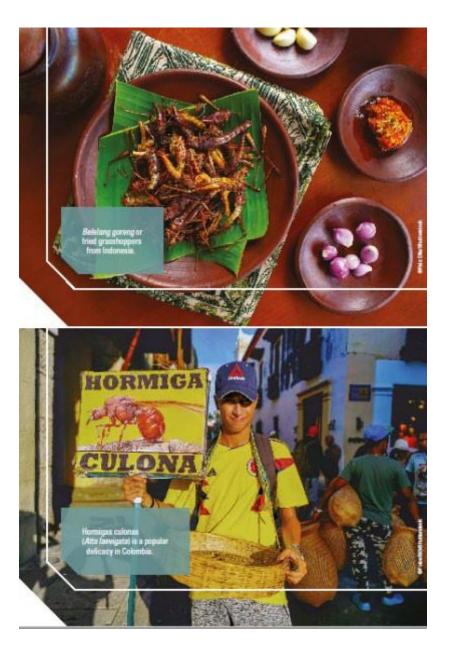

Seafood

Parasites Anisakis

Insects Cackle sheet Sckroad

LOOKING AT EDIBLE INSECTS FROM A FOOD SAFETY PERSPECTIVE




CONTENTS

Preface	· · · · V
Acknowledgements	vi
Abbreviations and acronyms	ix
Executive Summary	xi
Introduction	1
Food safety characterization of insects	15
Overview of regulatory framework for edible insects	33
Challenges of the insect sector	45
The way forward	55
References	59

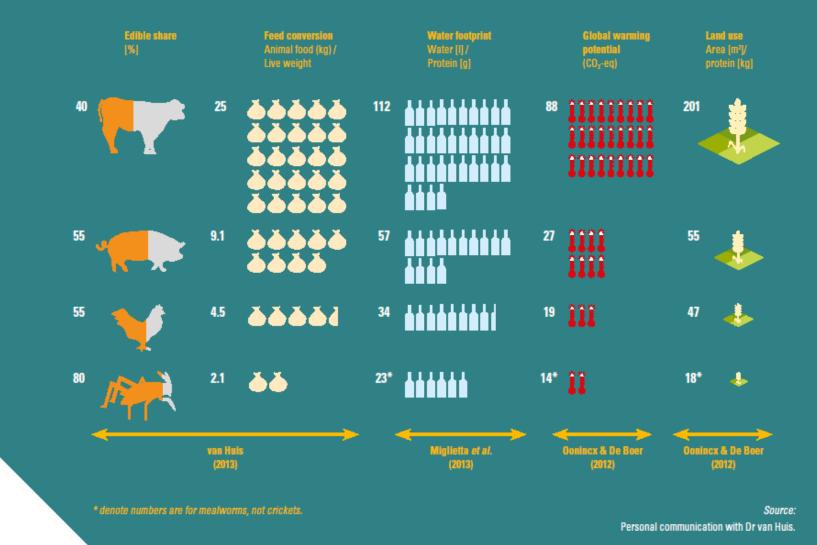

Challenges and opportunities for the sector

FIGURE 2. COMPARISON OF FEED CONVERSION, WATER, GLOBAL WARMING POTENTIAL, AND LAND NEEDED TO PRODUCE 1 KG OF THE LIVE ANIMAL. ALSO SHOWN IS THE PERCENTAGE OF EACH ANIMAL THAT IS EDIBLE.

DRAMBURG ET AL.

B09 - Edible insects

Kitty C. M. Verhoeckx, André

Highlights

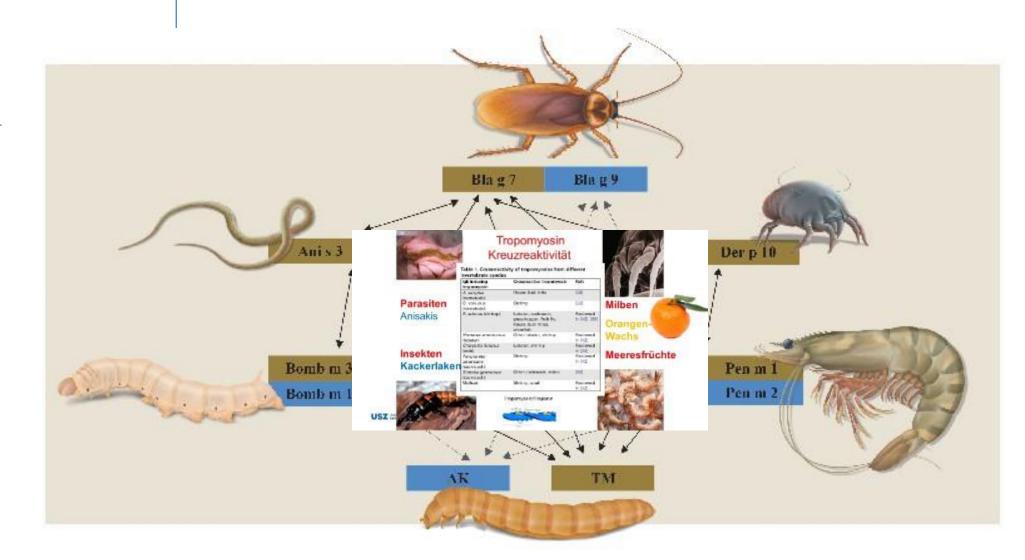
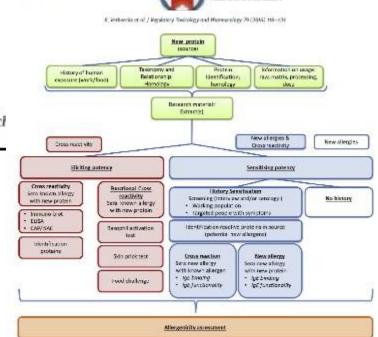


FIGURE 79 Cross-reactivity of tropomyosin (TM) and arginine kinase (AK) between different allergenic sources (Solid line=tropomyosin; dashed line=arginine kinase)


Commentary

Allergenicity assessment strategy for novel food proteins and protein sources

Kitty Verhoeckx a, b, *, Henrike Broekman b, André Knulst b, Geert Houben a, b

a TNO, Utrechtseweg 48, 3704 HE Zeist, The Netherlands

^b Dep. Dermatology/Allergology, University Medical Centre Utrecht (UMCU), P.O. Box 85500, Internal mail no G02.124, 3508 GA, Utrech

CrossMark

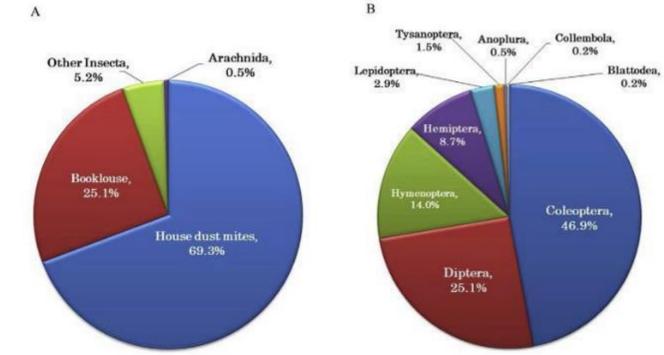
Accidental insect consumption p

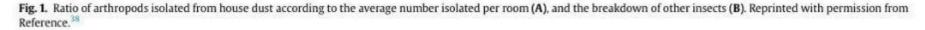
1.5 kilogrammes per year

e.g. in

wheat flower (pancake syndrome)

dust on coffee beans and fruits


Invited Review Article


Respiratory sensitization to insect allergens: Species, components and clinical symptoms

Yuma Fukutomi ^{a, *}, Yuji Kawakami ^{a, b}

^a Clinical Research Center for Allergy and Rheumatology, National H ^b Laboratory of Integrated Pest Management, FCG Research Institute,

Where insects are already used as food

 Growing fruit and vegetables

 Colourings, for example in drinks (carmine)

youtube.com The Future of Food: Eating Insects - YouTube

 Carnithine in "power drinks"

AMPAR

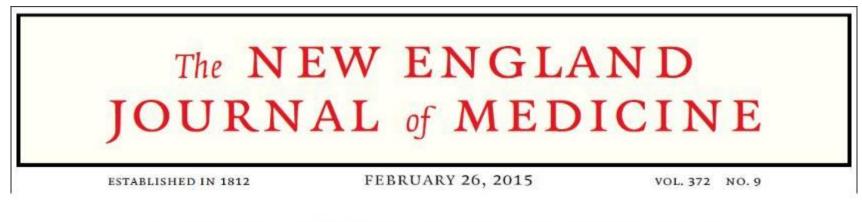
Prevention and Therapy of Allergies

Allergenavoidance

Drugs

Prevention and Therapy of Allergies

Allergenavoidance



Drugs

Randomized Trial of Peanut Consumption in Infants at Risk for Peanut Allergy

George Du Toit, M.B., B.Ch., Graham Roberts, D.M., Peter H. Sayre, M.D., Ph.D., Henry T. Bahnson, M.P.H.,
 Suzana Radulovic, M.D., Alexandra F. Santos, M.D., Helen A. Brough, M.B., B.S., Deborah Phippard, Ph.D.,
 Monica Basting, M.A., Mary Feeney, M.Sc., R.D., Victor Turcanu, M.D., Ph.D., Michelle L. Sever, M.S.P.H., Ph.D.,
 Margarita Gomez Lorenzo, M.D., Marshall Plaut, M.D., and Gideon Lack, M.B., B.Ch., for the LEAP Study Team*

Randomized Trial of Peanut Consumption in Infants at Risk for Peanut Allergy

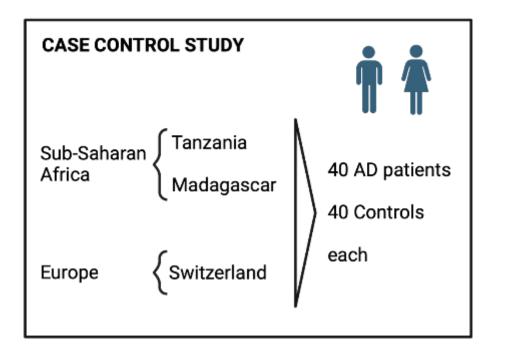
No peanut higher rate of panut allergy Regular peanut consumptionlower risk of peanut allergy

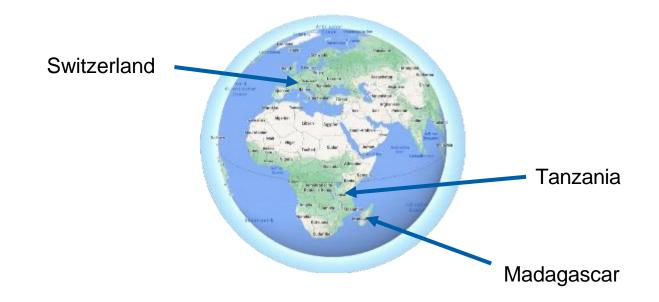
CONCLUSIONS

The early introduction of peanuts significantly decreased the frequency of the development of peanut allergy among children at high risk for this allergy and modulated immune responses to peanuts. (Funded by the National Institute of Allergy and Infectious Diseases and others; ClinicalTrials.gov number, NCT00329784.)

Food recommendation in early childhood to prevent AD

Up till recently




Study Design

Current Status

	AD Patients	Healthy Controls	Total
Switzerland	40	40	80
Tanzania	40	40	80
Madagascar	24	40	64

House dust mite also by far the most sensitization in AD in Nigeria Study by Dr Erere Otrofanawei, Lagos, presented at ISAD 2024

Abstract

Title: Sensitization to Mites and cockroaches is highly predominant in atopic dermatitis in Nigeria - a pilot study from Lagos

Erere Otrofanowei^{1,2,}, Danielle Fehr^{3,} Olabisi Akanbi, ¹ Ayesha Akinkugbe¹, Olusola O Ayanlowo¹, Cezmi Akdis ², Peter Schmid-Grendelmeier³, Marie Charlotte-Brueggen³, Yasutaka Mitamuro²

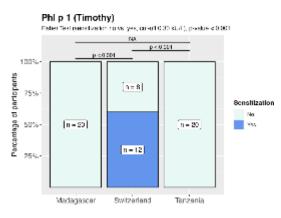
Affiliations:

- 1) Lagos University Teaching Hospital, Lagos, Nigeria
- 2) Swiss Institute for Allergy Research SIAF Davos, Switzerland
- 3) Allergy Unit, Dept of Dermatology, University Hospital of Zurich, Switzerland

By far for the most common sensitizations was found to various mites and cockroaches, so on a molecular level from 16 patients (47%)

(Der f 2 /Der p2), in descending order to Blo t 5, Der p 21, Der p 23, Blo t 21, Der p 5, Gly d 2, Tyr p2 and Der f 1, Lep d 2, Aca sand Der p 1 (11 AD/32%).

slgE to Grass Pollen in ALEX2

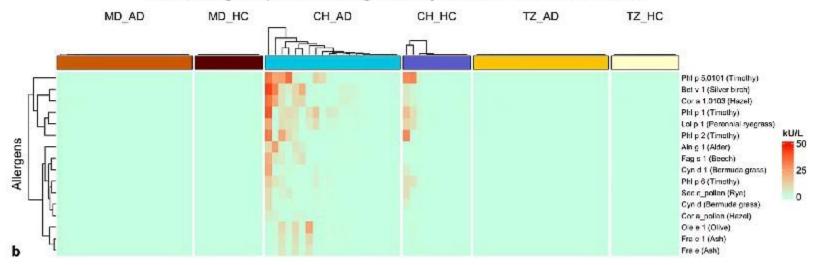

Common Name	Allergen Name	Scientific name
Bahia grass	Pas n	Paspalum notatum
Bermuda grass	Cyn d	Cynodon dactylon
Bermuda grass	Cyn d 1	Cynodon dactylon
Common reed	Phr c	Phragmites communis
Perennial ryegrass	Lol p 1	Lolium perenne
Rye	Sec c_pollen	Secale cereale
Timothy	Phl p 1	Phleum pratense
Timothy	Phl p 2	Phleum pratense
Timothy	Phl p 5.0101	Phleum pratense
Timothy	Phl p 6	Phleum pratense
Timothy	Phl p 7	Phleum pratense
Timothy	Phl p 12	Phleum pratense

Timothy Grass (Phleum pratense)

- «Plant from cold or cool climates.»
- «Sensitive to drought.»
- «Native to Europe, temperate Asia and North Africa»

FAO, 2013. Grassland Index. A searchable catalogue of grass and forage legumes. FAO, Rome, Italy.

Picture: https://<u>www.pollen.com/resea</u> rch/genus/phleum


original article

Allargo J Int https://doi.org/10.1007/s40629-024-00313-9

Sensitizations to pollen differ between Central European and Sub-Saharan African atopic dermatitis patients

Danielle Fehr () + Muriel Rentschler - Fandresena Sendrasoa - Nick Li - Anna White - Meike Distler - Claudia Lang -Gloria Masenga - Nelson Mosha - George Semango - Clara Clemens - Tahinamandranto Rasamoelina -Abel Hermann Soankasina - Fahafahantsoa Rapelanoro Rabenja - Daudi Mavura - John Elisante Masenga -Peter Schmid-Grendelmeier - Marie-Charlotte Br

Levels of sIgE to pollen with significantly different sensitization rates

Running Pollen Monitoring Stations Worldwide

Pollen Monitoring Stations (EAACI Taskforce), Filter "Open-running station"=Yes, Access December 2023, https://oteros.shinyapps.io/pollen_map/_w_3805eb39/#tab-8379-1 Danielle Fehr | October 2024

Evidence for different immune signatures and

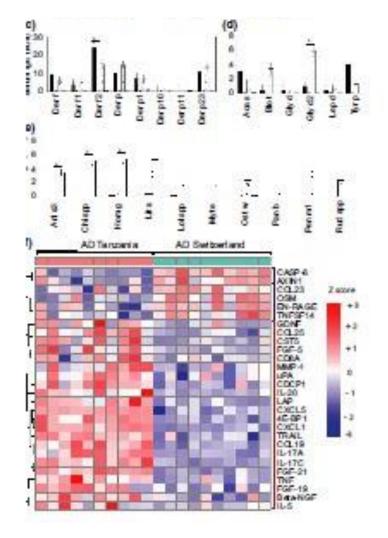
sensitization patterns in sub-Saharan African vs.

Central European atopic dermatitis patients

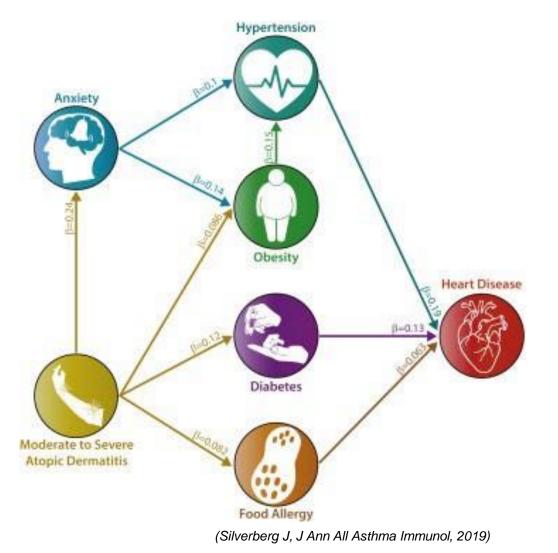
-Mts 177 dominated signature in SsA patients

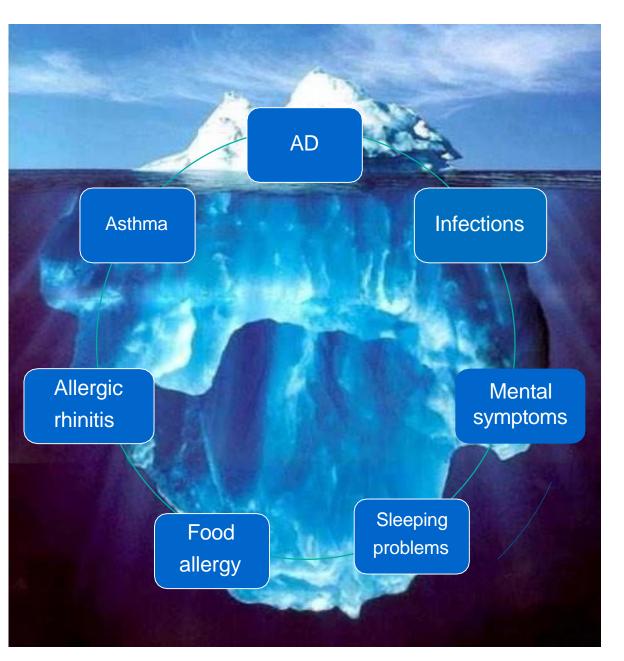
Protein name		
4E-BP1		Pre
CCL19		
CXCL1		Pro
TGF-beta		Th1
CCL25		
TRAIL		dor
FGF-5		TZ
IL-17C		con
IL-17A		
TNF		
CXCL5		

Preliminary findings


Pro-inflammatory, Th17-related mediators

dominate in the serum of TZ AD patients compared to CH AD patients


- exhibiting dominant $T_{\rm H}2$ and $T_{\rm H}22$ skewing
- attenuation of lipid metabolism-related products


Lang CCV et al. Ann Allergy Asthma Immunol. 2021 Sep;127(3):334-341 Lang CCV et al. J Eur Acad Dermatol Venereol. 2021 Feb;35(2):e140-e142

«Common» comorbidities in AD

Staphylococci and other bacteria in AD

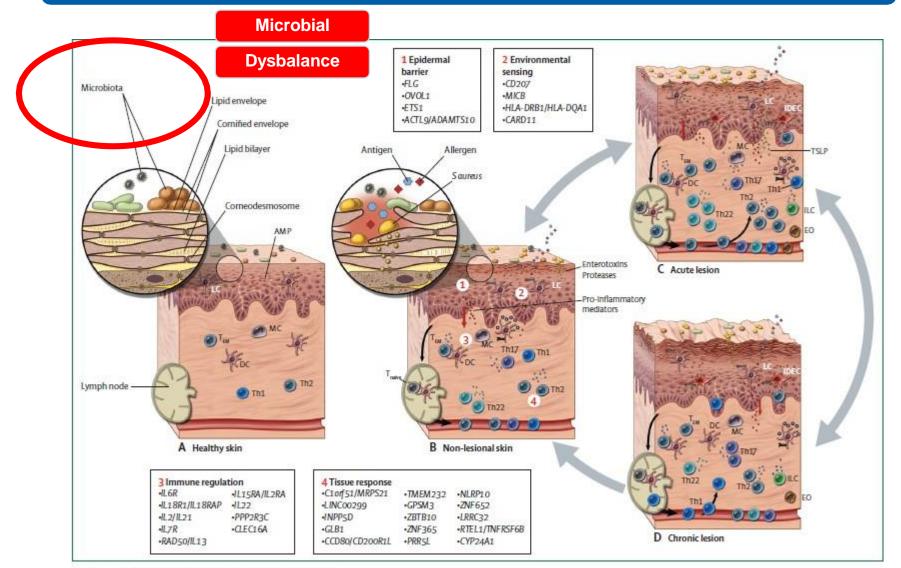


Figure 4: Key pathophysiological changes in atopic dermatitis

64

Adapted from Weidinger & Novak Lancet 2015

Staphylococci in AD

Prolongation and

worsening of AD

Sepsis and

Death

Trigger factors in AD according to age

100	Un	ECK.	101	upuat	
1.004				Contraction of the	

Received: 21 January 2024 Revised: 15 May 2024 Accepted: 16 May 2024

DOI: 10.1111/exd.15108

RESEARCH ARTICLE

Experimental Dermatology WILEY

Malassezia specific IgE in head and neck dermatitis of eczema: A systematic review & meta-analysis

Hui Xin See Tow¹ | Yik Weng Yew^{2,3}

	U II	ECK	101	updat	
1000					

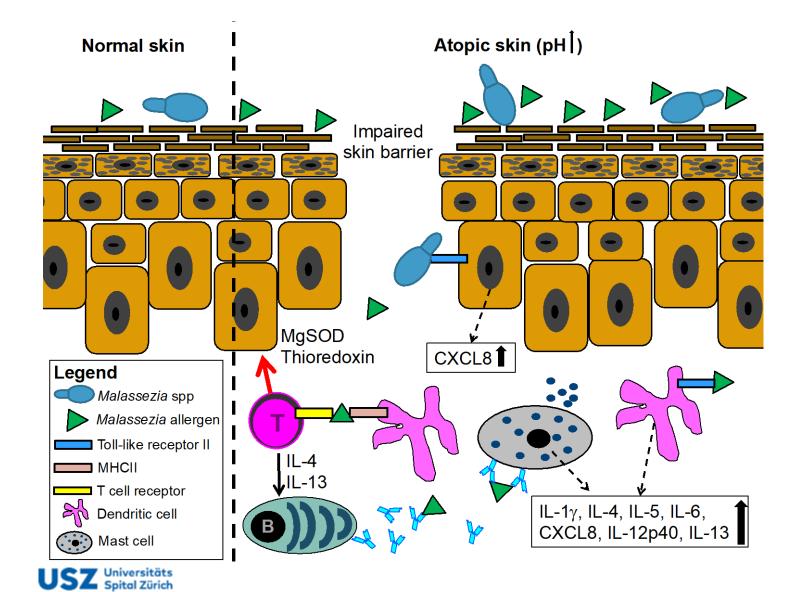
Received: 21 January 2024	Revised: 15 May 2024	Accepted: 16 May 2024
---------------------------	----------------------	-----------------------

DOI: 10.1111/exd.15108

RESEARCH ARTICLE

Experimental Dermatology WILEY

Malassezia specific IgE in head and neck dermatitis of eczema: A systematic review & meta-analysis


Hui Xin See Tow¹ | Yik Weng Ye

Author	Specific IgE Positive	Total HNAD	Prop	portion Pos	itive	Events	95%-CI
Bayrou	106	106			: #	100.0	[96.6; 100.0]
Brodska	43	74		- 18		58.1	
Choi	28	121			1	23.1	[16.0; 31.7]
Devos	18	18			- i	100.0	[81.5; 100.0]
Falk	12	22	-	80000 10000	- 1	54.5	[32.2; 75.6]
Jensen-Jarolim	7	20				35.0	
Johansson	54	98				55.1	[44.7; 65.2]
Kim	54	80				67.5	[56.1; 77.6]
Kosonen	55	65				84.6	[73.5; 92.4]
Kozera	25	25			-	100.0	[86.3; 100.0]
Navarro	14	15		1.0		93.3	[68.1; 99.8]
Takahata	26	37				70.3	[53.0; 84.1]
Zargari	66	98			H!	67.3	[57.1; 76.5]
Zhang	37	61		- 181	-	60.7	[47.3; 72.9]
Random effects model		840				79.3	[57.5; 91.5]
Prediction interval		-					[5.8; 99.6]
Heterogeneity: $I^2 = 85\%$, $p <$	0.01		1	1 1	1		
			20	40 60	80 10	00	

FIGURE 2 Proportion of Malassezia specific IgE in HNAD patients. HNAD, head and neck dermatitis.

Sensitization to Malassezia in AD

IgE-mediated and T cell-mediated autoimmunity against manganese superoxide dismutase in atopic dermatitis

Peter Schmid Grundelmeier, MD.⁴⁵ Subine Flückiger, PhD.⁴ Reiner Disch, MD.⁴ Aust Troutmene, MD.⁵ Brundb Withmith, MD.⁵ Kunt Bisser, PhD.⁴ Annika Scheprein, MD.⁴ and Reto Dommit, PhD⁶ Care and Zirock Supervised, and Schellein, Sweden

IgE-mediated and T cell-mediated autoimmunity against mangenese superoxide dismutase in atopic dermatitis

Peter Scinnels Grendelmeier, ND, Salter Flickeger, JAD, Raiter Disch, AD, Aust Bruthame, MD, Brutele Walterte, ND, Kartilisser PhD, Aanalia Schepmer, MD, Hele Dramm, PhD

> Jaconal of Allergy and Chocal Isomunikagy Volume 115, Insue 5, Pager 1969-1975 (May 2015) 001. 45 (1993) ac. 2015 (1965)

Temescolouse

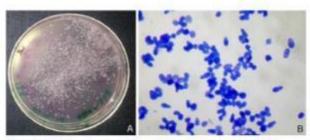
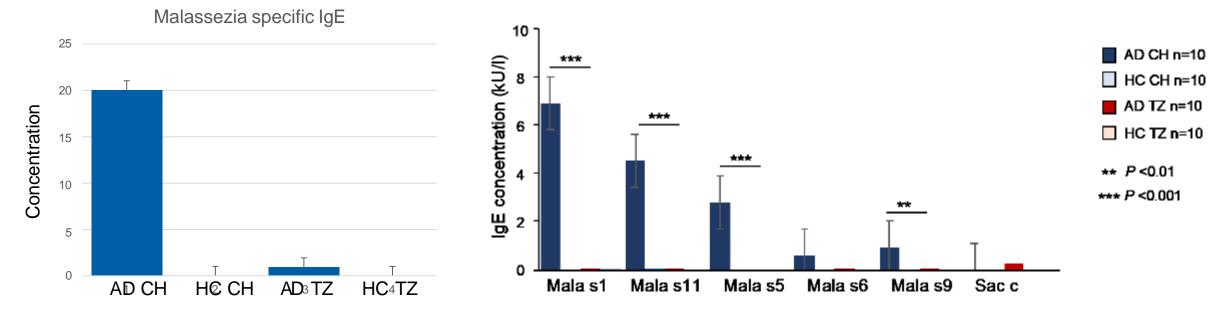


Figure 1. (A) Malassezia sympodial/s on Malassezia ChromAgar. Growth after 48h of incubation at 34 °C. (B) Methylene blue staining of M. sympodialis culture

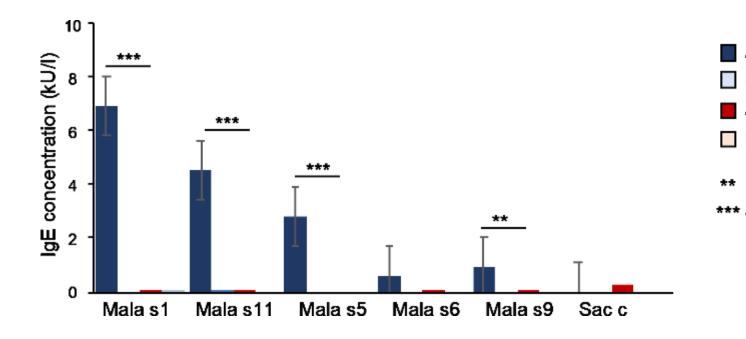
Pityriasis versicolor/Colonzation with Malassezia is common in Tanzania



Adamo Trop Doct 2016

Results: Prominent Malassezia sensitization in Switzerland but not in Tanzania

Malassezia antigen-specific IgE



Lang CCV et al. J Eur Acad Dermatol Venereol. 2021 Feb;35(2):e140-e142


Results: Prominent Malassezia sensitization in Switzerland but **no**t in Tanzania due to different IL-17 resopnse?

Malassezia antigen-specific IgE

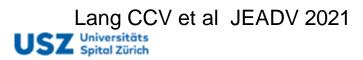
Cell Host & Microbe

The Skin Commensal Yeast *Malassezia* Triggers a Type 17 Response that Coordinates Anti-fungal Immunity and Exacerbates Skin Inflammation

Authors

Florian Sparber, Corinne De Gregorio, Simone Steckholzer, ..., Martin Glatz, Federica Sallusto, Salomé LeibundGut-Landmann

ALIGIE


Correspondence

salome.leibundgut-landmann@uzh.ch

In Brief

The skin commensal yeast Malassezia is associated with common skin disorders like atopic dermatitis, but how the mammalian host responds to Malassezia remains unclear. Using an epicutaneous infection model in mice, Sparber et al. demonstrate that the IL-23-IL-17 pathway controls fungal colonization and also drives Malassezia-induced inflammation in atopy-like skin.

Sparber F, et al. Cell Host Microbe. 2019; 13;25(3):389-403

Replyed 21 January 2024 | Revised 15 May 2024 | Appendix 15 May 2024 C-10111-w-1748

RESEARCH ARTICLE

Malassezia specific IgE in head and neck dermatitis of eczema: A systematic review & meta-analysis

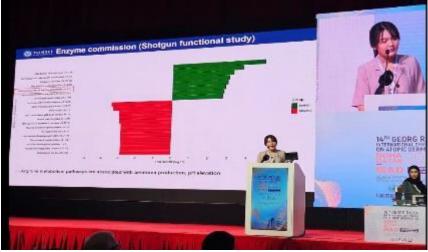
Hui Xin See Tow¹ | Yik Weng Yew²³

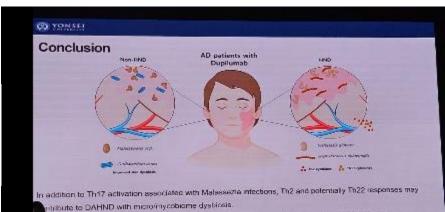
Development or Exacerbation of Head and Neck Dermatitis in Patients Treated for Atopic Dermatitis With Dupilumab. Soira A et JAMA Dermatology 2019-11-01

Murphy MJ et al Paradoxical eruptions to targeted therapies in dermatology: A systematic review and analysis. J Am Acad Dermatol. 2022 May;86(5):1080-1091

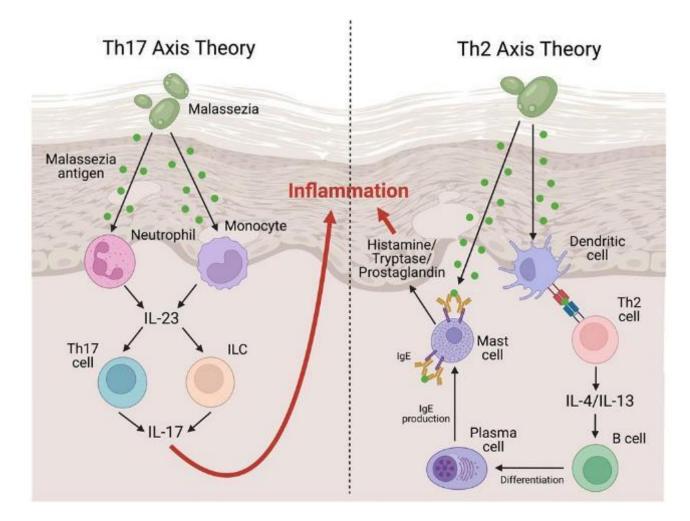
de Wijs LEM et al. Clinical and histopathological characterization of paradoxical head and neck erythema in patients with atopic dermatitis treated with dupilumab: a case series. Br J Dermatol. 2020 Oct;183(4):745-749

Lio et al. Baricitinib, an Oral Reversible Janus Kinase-1 and -2 Inhibitor, for Atopic Dermatitis: Head and Neck Response From BREEZE-AD4 and BREEZE-AD7, presented at the European Academy of Dermatology and Venereology (EADV); Virtual; 29 Sept – 2 Oct 2021; Poster P0216


Shotgun Metagenomics Reveals Microbiome Dysbiosis in Dupilumab-Associated Head and Neck Dermatitis


Wanjin KIM, South Korea

Trans you Constant you Not the second second



his dysregulation may also explain delayed treatment outcomes in Euprumab-treated AD patients

Th17 Axis /IL-17 and Th2 axis /IL-4/13 in Head & Neck Dermatitis

Chong AC, Navarro-Triviño FJ, Su M, Park CO. Fungal Head and Neck Dermatitis: Current Understanding and Management. Clin Rev Allergy Immunol. 2024 Jun;66(3):363-375 22.11.2024 83

Article

https://doi.org/10.1038/s41467-024-46540-0

Dupilumab-associated head and neck dermatitis shows a pronounced type 22 immune signature mediated by oligoclonally expanded T cells

Received: 3 July 2023

Accepted: 1 March 2024

Published online: 02 April 2024

Charlefor undated

Christine Bangert ^O^{1,5}, Natalia Alkon ^O^{1,5}, Sumanth Chennaredd y², Tamara Arnoldner¹, Jasmine P. Levine^{2,3}, Magdalena Pilz¹, Marco A. Medjimorec¹, John Ruggiero², Emry R. Cohenour², Constanze Jonak ^O¹, William Damsky ^O⁴, Johannes Griss ^O¹ & Patrick M. Brunner ^O² ⊡

Malassezia in Atopic Dermatitis (A) in Tanzania (TZ) in comparison with Switzerland (CH)

- AD is also very common in SubSaharan Africa/TZ
- Immunologic signatures are different in AD patients between CH and SsA: IL17 is a dominant cytokine TZ

- Colonization with Malassezia spp. Is common in both places but
- Sensitization to Malassezia spp. Is very low in SsA compared to CH

Received: 31 May 2022 Revised: 22 June 2022 Accepted: 27 June 2022

DOI: 10.1111/all.15422

CORRESPONDENCE

Atopic dermatitis: The importance of future research in Africa

Danielle Fehr^{1,2,3} D Claudia Lang^{1,2,3} John Masenga⁴ Daudi Mavura⁴ Peter Schmid-Grendelmeier^{1,2,3} D Marie-Charlotte Brüggen^{1,2,3} D

¹Allergy Unit, Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
²Faculty of Medicine, University of Zurich, Zurich, Switzerland
³Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
⁴Regional Dermatology Training Centre, Kilimanjaro Christian Medical Centre, Moshi, Tanzania

tanzania.studie@usz.ch

Allergy EXECUTE AL DESIGNAL OF ALLE

Kontakt Universitätsspital Zürich Rughafen Dermatologische Klinik Allergiestation CIR G8 Studienteam Circle 59, 8058 Flughafen Postadresse: Römistr. 100, 8091 Zürich

+42 43 253 10 75 (Mo - Fr, 8.00 - 16.00 Uhr)

torzonia studie@usz.ch Kontaktpersors Danielle Fehr (Dipl. Årstin)

Supported by LEO Foundation

www.usz.ch

🚢 WILEY

Studienteilnehmende gesucht

Neurodermitis in Europa und Subsahara-Afrika

Eine Studie der Derroctologischen Kinik

Wir wissen weiter.

DOI: 10.1111/all.15422

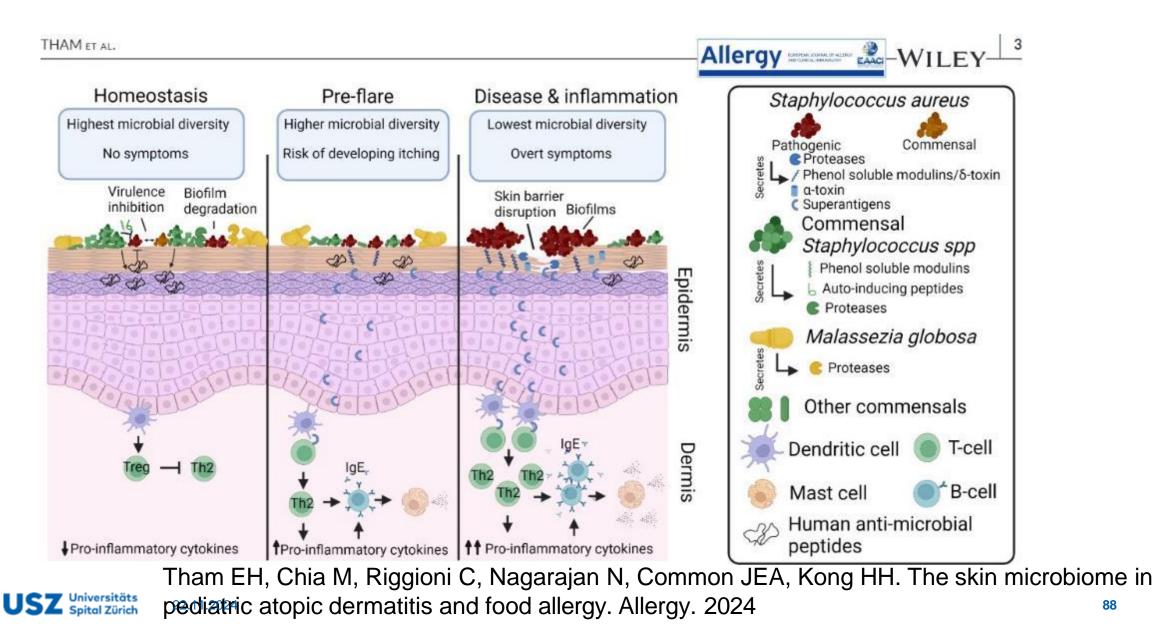
CORRESPONDENCE

Atopic dermatitis: The importance of future research in Africa

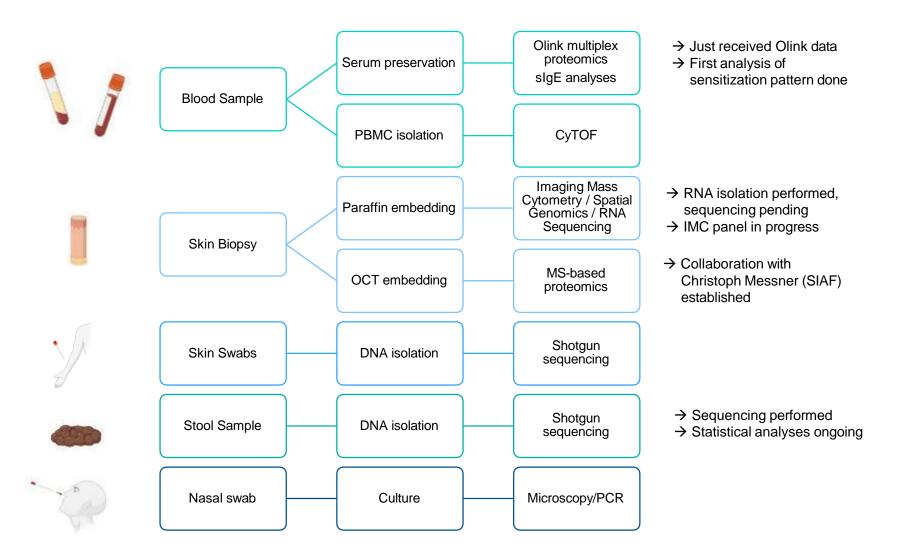
Danielle Fehr^{1,2,3} Claudia Lang^{1,2,3} John Masenga⁴ Daudi Mavura⁴ Peter Schmid-Grendelmeier^{1,2,3} Marie-Charlotte Brüggen^{1,2,3}

¹Allergy Unit, Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
²Faculty of Medicine, University of Zurich, Zurich, Switzerland
³Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
⁴Regional Dermatology Training Centre, Kilimanjaro Christian Medical Centre, Moshi, Tanzania

Allergy


WILEY

Supported by LEO Foundation



The skin microbiome in pediatric atopic dermatitis and food allergy

Planned analyses

Survey of used treatments in AD in SubSaharan Africa

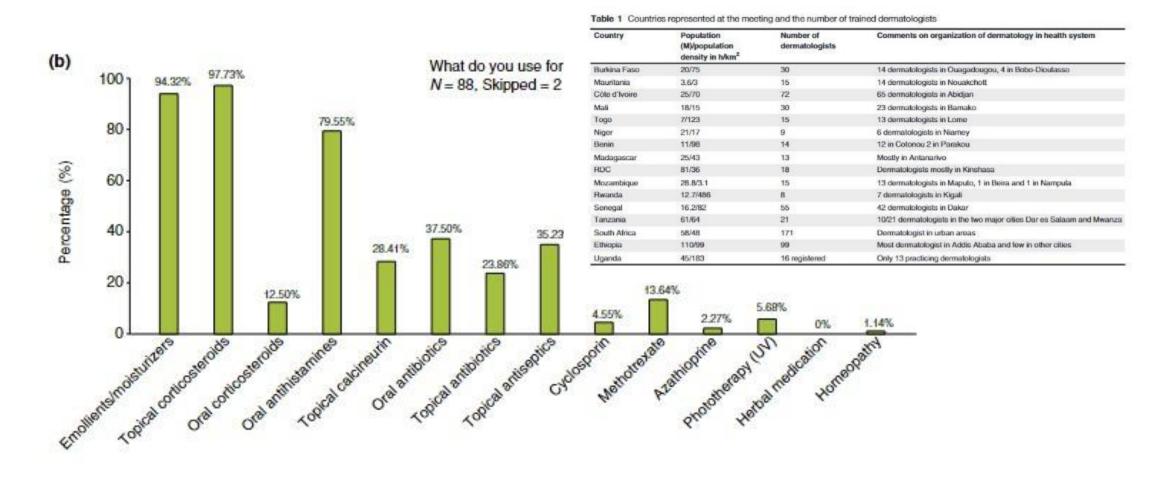


Figure 2 (a) survey responses by country and (b) treatments used by survey responders.

Schmid-Grendelmeier P et al JEADV 20219

							1		0	*		-	*		
	TANZAN	MAURITI	BURKI	SENEGA L	MADAG ASCAR	COTE D'IVOIR E	CONGO BRAZZA VILLE	NIGERIA	TUNISIA	RD CONGO	MALI	ETHIOPI A	CAMER OON	BENIN	RWAND
	IA.	1.46	FASO						TND	CDF	F CFA	ETB	FCFA	FCFA	RWF10
Minimu m wage	TZS 140,00 0	MRU 45,000.	F CFA 45,000	F CFA 237/Hr 40,000/ month	MGA 262,68 0	F CFA 39,960 F CFA 75,000	FCFA 120,00 0	NGN 65,000	417.558	7,075	40,000	420	43,969	52,000	0/day 56,000 avera
1 dollar/ curren cy	1/ 2725	1/39.52	1/603	1/603	1/4571	1/603	1/603	1/1,633	1/3.09	1/2,841	1/603	1/119	1/603	1/603	1/1,35
Salary in dollar	51.4	1,138	74	66	57	124	199	39	135.132	2.4	74	3.5	72.9	86	41
6 cost of aselin /salar y	9.7%	0.4%	6.7%	7.6%	8.75%	4.02%	2.5%	12.8%	3.69%	207%	6.7%	140%	6.8%	5.8%	12.179

A report on the accessibility of emollients in AD in SSA- to ISAD-WHO Meeting in Doha, Qatar Erere Otrofanowei (Nigeria) for African AD Working Group.

WHO – ISAD Strategies for AD in SubSaharan Africa 6.-8. June 2022 Antananarivo, Madagascar

WHO-ISAD meeting Gdansk before the 13th Georg Rajka symposium on Atopic Dermatitis (AD)

EML application « Moisturizers for AD » submitted Nov 1st 2024

Inclusion of urea- and glycerol-based topical moisturizers on the EML and EMLc for the treatment of atopic dermatitis in adults and children

Applicants:

International Society of Atopic Dermatitis

Co-Applicant:

WHO Department of control of Neglected Tropical Diseases

Persons to contact: Prof Alain fareb. ISAD Email: alain.taleb@u-bordeaux.fr Phone: + 33 647679795 Dr Jose Ruiz Postigo, WHO NTDs Ernail: postigoj@who.int Phone : + 41 795163882 Writing group: dermatologists, pharmacists, from academia or industry,

Support: GlobalSkin (Patient advocacy) ILDS (Int League Derm Soc) ASDV (African Soc Derm Vener)

223 WHO Expert Committee on the Selection and Use of Essential Medicines 2023

World Health Organization

Thank you. Misaotra betsaka. Asante sana. 🙂

Danielle Fehr | October 2024

With best regards from the staff and study team of the Allergy Unit in Switzerland

And your e most welcome at the Rajka meeting

Rajka 2026: Beijing, China

Thank you

